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ABSTRACT

Spectral similarity measures have been shown to exhibit

good performance in several Music Information Retrieval

(MIR) applications. They are also known, however, to pos-

sess several undesirable properties, namely allowing the

existence of hub songs (songs which frequently appear in

nearest neighbor lists of other songs), “orphans” (songs

which practically never appear), and difficulties in distin-

guishing the farthest from the nearest neighbor due to the

concentration effect caused by high dimensionality of data

space. In this paper we develop a conceptual framework

that allows connecting all three undesired properties. We

show that hubs and “orphans” are expected to appear in

high-dimensional data spaces, and relate the cause of their

appearance with the concentration property of distance /

similarity measures. We verify our conclusions on real mu-

sic data, examining groups of frames generated by Gaus-

sian Mixture Models (GMMs), considering two similar-

ity measures: Earth Mover’s Distance (EMD) in combi-

nation with Kullback-Leibler (KL) divergence, and Monte

Carlo (MC) sampling. The proposed framework can be

useful to MIR researchers to address problems of spectral

similarity, understand their fundamental origins, and thus

be able to develop more robust methods for their remedy.

1. INTRODUCTION

The notion of audio-based music similarity is generally

considered to be complex, subjective, and context depen-

dent [13]. However, spectral similarity measures [2,10] are

receiving a growing interest and have been shown to ex-

hibit good performance in several Music Information Re-

trieval (MIR) applications [14]. These measures describe

aspects related to timbre and model the “global sound” of

a musical signal based on features called Mel Frequency

Cepstrum Coefficients (MFCCs).

Despite the advantages of spectral similarity measures,

related research has also reported a number of undesired

properties, summarized as follows:
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• The existence of hub songs (also called “always sim-

ilar”) [2], which are close neighbors of many other

pieces to which they hold no perceptual similarity,

thus increasing the rate of false positives.

• The existence of “orphans” (also called “never simi-

lar”) [12], which are songs that rarely become close

neighbors of any other piece (despite possibly hav-

ing perceptual similarity to a large number of songs),

increasing therefore the rate of true negatives.

• Songs are represented in a feature space whose di-

mensionality is determined by the number of fea-

tures (MFCCs). As the dimensionality grows, it is

becoming hard to identify meaningful nearest neigh-

bors, since all songs tend to be at nearly the same

distance from each other. This property was identi-

fied in other research areas [1, 5, 8], but was also ex-

amined in the contexts of MIR [6] and audio speech

data (based on MFCCs) [18].

These undesired properties constitute some of the main

causes for the empirically demonstrated upper limit for the

performance of spectral similarity measures, referred to as

the “glass ceiling” [2]. Recent research has focused mostly

on the amelioration of hubness (the attribute of being a hub

song), by proposing techniques for normalizing the dis-

tances between songs in a way that reduces the influence of

hubs [11,14,15], whereas other works [9,17,19] developed

measures that try to avoid hubness.

Our motivation is to develop a conceptual framework

that allows for relating all three aforementioned undesired

properties, and explains the mechanisms that create them.

Aucouturier and Pachet [3] have focused on the analysis of

hubness and concluded that the creation of homogenized

models (i.e., models that ignore the least likely mixture

components) are responsible for creating hubs. Despite

this detailed conclusion, our emphasis is to disclose a more

fundamental reason that causes all three undesired proper-

ties, which is the high dimensionality of the feature space

that originates from the need to use multiple MFCCs in

order to capture the “global sound”.

A conjecture about the role of high dimensionality has

been stated by Berenzweig in his thesis [4]. This conjec-

ture was drawn from two synthetic data sets that follow

multivariate Gaussian distributions. In particular, a main

conclusion of this thesis [4, page 99] was: “First, hubness
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seems to be a natural consequence of the curse of dimen-

sionality, at least for the points distributed according to a

Gaussian in a space up to 32 dimensions. In high dimen-

sions these points tend to be spread around the shell of the

space with very few points near the center; this implies that

any points that do happen to remain near the center will

be extreme hubs.” However, this work neither generalized

the conclusion to real audio music data, nor even to other

settings besides simple synthetic data. More importantly,

it did not provide a clear explanation of the mechanism

that creates hubness, leaving this question unresolved [4,

question 1 on page 99]. A more thorough examination of

hubness has been performed by Radovanović et al. [16],

wherein using real vector-space data the authors relate hub-

ness with the intrinsic dimensionality of data, and show

that in (intrinsically) high-dimensional data sets hubs tend

to appear in the proximity of cluster centers. However, [16]

focused primarily on general vector spaces and lp norms,

with the results not directly applicable for MIR purposes.

In this paper, we propose a conceptual framework to

provide a clear explanation of the mechanism that creates

hubness and show that hubs are expected to appear in high-

dimensional spaces (i.e., they are not points that just hap-

pen to remain near the center). Moreover, the framework

helps to understand the connection between all three un-

desired properties: hubs, “orphans” and the problem of

finding meaningful neighbors. Also, our conclusions are

verified with real audio music data. The proposed concep-

tual framework can be useful to MIR researchers to address

the problems of spectral similarity in relation to each other,

understand their fundamental reasons, and thus be able to

develop more robust methods for their remedy.

In the rest of this article, Section 2 reviews related work.

Section 3 presents the proposed framework, whereas Sec-

tion 4 provides empirical evidence for verifying the con-

clusions of the proposed framework in the MIR domain.

Finally, Section 5 concludes the paper.

2. RELATED WORK

Research by Aucouturier and Pachet [3] focuses on the na-

ture and causes of hub songs. They propose methods to de-

tect hubs and infer that hubs are distributed along a scale-

free distribution. Moreover, in their work they deduce that

hubs neither exist due to the spectral features, nor are they

a property of a feature representation or a given modeling

strategy but rather tend to occur with any type of model that

uses agglomeration of multiple frames of a sound texture.

Furthermore, they establish that hubness is not a charac-

teristic of certain songs, as different algorithms distribute

hubs differently in a database. In addition, they also es-

tablish that the class of algorithms studied is irrelevant to

hubs which appear only for data with a given amount of

heterogeneity. Finally, they conclude that hubness can be

localized to certain parts of the distribution of a song.

Berenzweig [4] offers insight as to the understanding of

hubs and arrives to the conclusion that their existence is a

natural result of the curse of dimensionality. Additionally,

in his work, the possibility of hubs being derived from sim-

ilarity to a universal background is proven invalid through

experimentation, that is by showing that the discriminating

power of specific frames is not ameliorated by weighting

based on their shared information.

As mentioned in Section 1, unlike Aucouturier and Pa-

chet [3] our motivation is to provide high dimensionality as

a more fundamental reason for hubness, and for the other

two undesired properties (see Section 1) as well. Differen-

tiating also from the work of Berenzweig [4], we develop

a thorough conceptual framework that links all three prop-

erties and clearly explains the mechanisms through which

they originate.

Other related work includes techniques to ameliorate or

try to avoid hubness [9, 11, 14, 15, 17, 19]. We hope that

our proposed framework will assist in this direction, by

allowing MIR researchers to further analyze the causes of

all examined undesired properties (not just hubness), and

develop solutions that take into account all of them.

3. PROPOSED CONCEPTUAL FRAMEWORK

We commence the description of the proposed conceptual

framework by demonstrating the property of concentra-

tion [8] that is exhibited by spectral similarity measures

due to the high dimensionality of their feature space. Next,

we examine how the generation of hubs and “orphans” can

be explained as a consequence of high dimensionality, in

relation with the concentration phenomenon. The conclu-

sions (in this and the following section) are verified with

real data. Since our description involves some empirical

measurements, we start by detailing the employed settings.

3.1 Settings for Empirical Measurements

We focus on two characteristic spectral similarity measures

that have been widely used in related research. The first

is proposed by Logan and Salomon [10], and uses Earth

Mover’s Distance (EMD) in combination with Kullback-

Leibler (KL) divergence to compute the distance between

groups of frames generated by a GMM approach. The sec-

ond is proposed by Aucouturier and Pachet [2], and uses

Monte Carlo (MC) sampling to measure the similarities of

GMMs. Henceforth, the first measure is denoted as EMD-

KL, whereas the second as GMM-MC. We based our im-

plementation of both measures on the MA toolbox [12].

The main parameter examined for both measures is the

number of MFCCs, denoted as d, which corresponds to the

dimensionality of the feature space, since each frame of the

audio signal is mapped to a point in a d-dimensional space.

The default value for the number of clusters used in

Gaussian mixture modeling performed by GMM-MC and

EMD-KL is equal to one, since measures like G1C [12]

have demonstrated the efficacy of this option. In our ex-

periments we also examined other values in order to ver-

ify that this factor does not have any impact on our con-

clusions. For brevity we therefore present results only for

the default number of clusters. Regarding other parameters

(sampling rate, frame size, etc.), empirical evidence in re-

lated work [3], and our experiments, indicates that they are

not related with the examined issues. For this reason, we
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keep the remaining parameters at the default values from

the MA toolbox, which correspond to commonly used val-

ues in most related works. The sampling frequency of the

input wav file is 11025, the FFT window size is 512 sam-

ples and the FFT window hop size is 256 samples. Finally,

we used the MIREX’04 audio collection for the reasons

that it is widely used by the MIR community, has been in-

volved in all related work (e.g., [3]), and is publicly avail-

able, allowing reproducibility of the presented results.

3.2 The Property of Concentration

The concentration property of a distance (similarity) mea-

sure refers to the tendency of all points in a high-dimen-

sional feature space to be almost equally distant from (sim-

ilar to) each other. Concentration has been studied in vec-

tor spaces for Euclidean distance and other lp norms (in-

cluding fractional distances) [1, 8], and was also analyzed

in the MIR context [6], but not explicitly for the spectral

similarity measures we are focusing on in this work.

To ease comprehension, we first consider iid Gaussian

random data with d-dimensional points, the components

of which are independently drawn from N (0, 1). Figure 1

illustrates the concentration of Euclidean distance that in-

curs with high dimensionality. In particular, the figure de-

picts from top to bottom: the maximal observed value,

mean value plus one standard deviation, the mean value,

mean value minus one standard deviation, and minimal

observed value of distances of all data points to the ori-

gin. It can be seen that the mean value steadily increases

with increasing dimensionality, while the standard devia-

tion remains constant, and that the observed minimal and

maximal values become constrained to a narrow interval as

dimensionality increases. This means that distances of all

points to the origin (i.e., the norms) become very similar to

each other as dimensionality increases, with the same be-

havior also extending to all pairwise distances within a data

set [8], thus making it harder to distinguish between the

farthest and the nearest neighbor in high dimensions [1].

It is important to note that this property of distances was

proven to hold for any iid random data distribution [8].
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Figure 1. Concentration of Euclidean distance for iid

Gaussian random data (n = 2000 points).

Concentration is usually expressed as the ratio between

some measure of spread, like the standard deviation, and

some measure of magnitude, like the mean value, of dis-

tances of all points in a data set to some arbitrary reference

point [1, 8]. If this ratio converges to 0 as dimensionality

goes to infinity, it is said that distances concentrate. Re-

garding the aforementioned synthetic data set, if the origin

is selected as the reference point, Fig. 2 illustrates the ra-

tio between the standard deviation (σdist) and mean value

(µdist) of distances of all points to the origin, showing that

it tends to 0 as dimensionality increases. Moreover, theo-

retical results by François et al. [8] indicate that the same

asymptotic behavior holds with any other point selected as

the reference, and also extends to all pairwise distances in a

data set. In the case of Euclidean distance, the mean value

µdist behaves asymptotically as
√

d, whereas the standard

deviation σdist remains asymptotically constant.
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Figure 2. Ratio between the standard deviation and mean

value of the distribution of distances to the origin, for iid

Gaussian random data.

The property of concentration can be used to explain the

generation of hubs and “orphans” as follows. Existing the-

oretical and empirical results [1, 5] specify that concentra-

tion can be viewed as causing points in a high-dimensional

data set to approximately lie on the surface of a hyper-

sphere centered at an arbitrary point. In addition, further

results [7, 8], as illustrated in Fig. 1, indicate that the dis-

tribution of distances to any reference point has a finite

variance for any given d. If the data distribution center is

taken to be the reference point (as, coincidentally, is the

case in the previously used random data example), it can

be said that it is expected for points closer to the data cen-

ter to exist in high dimensions, since for any finite d the

standard deviation of the distribution of distances to the

data set center is finite (in this case, constant). However, in

higher dimensions, the points closer to the center have the

tendency to become closer, on average, to all other points,

thus having increased probability of becoming hubs by be-

ing near neighbors of many remaining points. On the other

hand, it is also expected to have a non-negligible number of

points farther from the data set center. Consequently, these

points, which are the “orphans”, become farther from all

other points and more difficult to be near neighbors of any

other point. The aforementioned connection between con-

centration and hubs/“orphans” has been initially proposed

by Radovanović et al. [16] using experimentation on iid

uniform random data, in contrast to Gaussian random data

which pertains to real musical data utilized in this paper.

Still, it is important to note that based on the results in [8],

the reasoning followed in [16] can be applied to any iid

random data distribution.
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In order to clarify the mechanism through which the

“centrality” of a point close to the data center, i.e. its prox-

imity to all other points, becomes amplified in high di-

mensions, let us return to the iid Gaussian random data

example and observe as reference points (instead of the

origin) two points with the following properties: point x0,

which is at the expected distance from the data center for

a given dimensionality d, and point x2, which is two stan-

dard deviations closer to the center than x0. 1 Next, we

compute the distributions of distances of x0 and x2 to all

other points, and denote the means of these distributions

µx0
and µx2

, respectively. Figure 3 plots the difference

between µx0
and µx2

. It can be seen that this difference

increases with increasing dimensionality, meaning that x2

becomes closer, on average, to all other points, solely by

virtue of increasing dimensionality. According to the re-

sults by François et al. [8], verified by our empirical mea-

surements, both µx0
and µx2

asymptotically behave as
√

d.

However, convergence does not occur at the same speed,

giving rise to the differences shown in Fig. 3 which ulti-

mately result in the emergence of hubs. Similar arguments

hold when, for example, point x2 is taken to be two stan-

dard deviations farther from the center than x0, explaining

the formation of “orphans.”
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Figure 3. Difference between means of distance distribu-

tions to points at analogous positions wrt the data center,

for iid Gaussian random data.

3.3 Concentration in Real Audio Data

The preceding discussion suggests that concentration can

help explain the generation of hubs and “orphans” for au-

dio music data and spectral similarity measures. However,

the aforementioned conclusions were drawn with respect

to distances between single points, whereas spectral sim-

ilarities are computed between Gaussian Mixture Models

(GMMs). Moreover, in this case of spectral similarity, we

can only consider pairwise distances and not a point of

reference like the center. Therefore, to examine the con-

centration of spectral similarity, we perform the following

measurement. We vary the dimensionality of the feature

space (number of MFCCs). For each examined dimension-

ality, we define for each song in the examined collection its

neighbor-range by computing the difference between the

1 Roughly speaking, for every d point x0 has the same “probability” of
occurrence with regards to the distance from the data distribution center,
and the same can be said for x2.

distances to its farthest and nearest neighbor. To charac-

terize the distribution of neighbor-range for each dimen-

sionality, as explained before, we follow the approach of

related work [8] and compute the ratio between the stan-

dard deviation σrange and the mean µrange of the neighbor-

ranges of all songs.

Figure 4 illustrates this ratio as a function of dimension-

ality, for the two examined spectral similarity measures.

The fact that the examined ratio reduces with increasing

dimensionality indicates that the neighbor-range is narrow-

ing as dimensionality increases, making it more difficult to

separate the closest from the farthest neighbor. Asymp-

totically, as dimensionality tends to infinity, the examined

ratio is expected to become equal to zero, denoting that the

closest and the farthest neighbor of any song will tend to

coincide. This means that asymptotically all points tend

to become equidistant. However, for the high but finite di-

mensionality values used in MIR applications, the standard

deviation in the examined ratio will be small but nonzero,

causing an analogous amplification of “centrality” to that

described above.

0 50 100 150

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d

σ
ra

n
g

e
 /

 µ
ra

n
g

e

GMM−MC

 

 

Figure 4. Ratio of standard deviation and mean value of

neighbor-range as a function of dimensionality.

4. DIMENSIONALITY: ROLE & IMPACT ON MIR

The proposed framework allows for explaining the emer-

gence of hubs and “orphans” principally as a consequence

of high dimensionality of the feature space, in relation with

the concentration it incurs. In this section we will verify

with the examined real audio music data that the high di-

mensionality of the feature space creates the hubs and “or-

phans” according to the mechanism described in the previ-

ous section. Additionally, we examine the resulting impact

of high dimensionality on MIR specific applications.

4.1 Verifying the Role of Dimensionality

Let Nk(x) denote the number of k-occurrences of each

song x in a collection, i.e., the number of times x occurs

among the k nearest neighbors of other songs. Following

the approach in [16], we express the asymmetry of Nk (i.e.,

the skewness) using the standardized third moment:

SNk
= E(Nk − µNk

)3/σ3
Nk

,

where µNk
and σNk

are the mean and standard deviation

of Nk. 2 For the examined real audio data, and for the two

2 An SNk
value of 0 signifies that the distribution of Nk is symmetri-

cal, positive (negative) values indicate skewness to the right (left).
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similarity measures GMM-MC and EMD-KL, Figures 5

and 6, respectively, depict skewness as a function of di-

mensionality (three different values of k are examined in

each case). As dimensionality increases, the increase of

skewness, for all values of k, indicates that the distribution

of Nk becomes considerably skewed to the right, resulting

in the emergence of hubs, i.e., points which appear in many

more k-nearest neighbor lists than other points.
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Figure 5. Skewness of Nk as a function of dimensionality

for the GMM-MC measure.
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Figure 6. Skewness of Nk as a function of dimensionality

for the EMD-KL measure.

Regarding “orphans,” Figure 7 depicts, for both exam-

ined measures, the number of songs with Nk equal to zero

as a function of dimensionality (k was set to 10). As ex-

pected, with increasing dimensionality, the number of such

songs increases, demonstrating the relation of “orphans”

with dimensionality.

All the above results show that dimensionality is the

fundamental reason for the emergence of hubs and “or-

phans.” In the next section we examine the relevance of

this result to the objectives of MIR.

4.2 Impact on MIR

In order to study how our main conclusion, concerning the

role of high dimensionality, affects MIR applications, we

rely on external labels, such as the genre, to characterize

the similarity between songs. This assumption is being

widely applied in MIR (e.g., in MIREX contests), since

results in related work [13] indicate that this assumption

is reasonable.
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Figure 7. Number of songs with Nk equal to 0 (k = 10).

In this context, we measure the impact of hubs by exam-

ining the number of times they mismatch in label with the

songs to which they are close neighbors. In this sense, we

can measure how much of the total error (in terms of label

mismatches) can be attributed to hubs. Figure 8 depicts,

as a function of dimensionality, the fraction of total error

due to the 10% of the strongest hubs, i.e., songs with the

largest Nk values (k was set to 1). For low dimensionality

values, when according to previous measurements hubs are

not strong, their responsibility for the total error is much

smaller compared to the case of larger dimensionality. It is

worth to note that, for the largest examined dimensionality

value, the strongest hubs are responsible for about 90% of

the total error.
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Figure 8. Fraction of total error due to 10% of the

strongest hubs (k = 1).

5. CONCLUSIONS

In this paper we propose a conceptual framework that re-

lates the known shortcomings of spectral similarity mea-

sures for music data: the existence of hubs, “orphans” and

the distance concentration phenomenon, with the high di-

mensionality of underlying data space. The framework

presents a unifying view of the three examined problems

of music similarity measures, offering an explanation of

their fundamental origins, which will hopefully help MIR

researchers develop robust methods for their remedy.

The issue of high dimensionality is significant for spec-

tral similarity measures because small dimensionality usu-

ally leads to poor discriminating capability, while high di-

mensionality produces the described negative effects per-

taining to hubs, “orphans,” and distance concentration.
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In future work we will take into consideration more the-

oretical aspects of the hub/“orphan” properties and similar-

ity concentration, providing a sounder theoretical backing

for the described relationships. Furthermore, it would be

interesting to examine why some approaches [9, 17, 19]

tend to produce less hubs, by relating to the intrinsic di-

mensionality of the space they produce (i.e., to consider

the proposed framework in explaining these approaches

and understanding their reported properties). We also plan

to conduct an extended experimental evaluation involving

more similarity measures and data collections, giving more

precise quantification of relationships between high dimen-

sionality and the aforementioned properties of (spectral)

similarity measures. Finally, we will develop novel miti-

gation methods for the problems induced by the existence

of excessive hubs and “orphans”. In particular, we will ex-

amine machine learning methods that apply correction to

spectral similarity measures in order to take into account

that retrieval error may not be distributed uniformly (as

exemplified in Section 4.2), thus focusing on hubs as the

main source of error, and in order to enable “orphans” to

participate more prominently as nearest neighbors.
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